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1. Substituting n = 0 gives us:
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w

= [2z(— cos:c)]%% -2 ’ (—cosz)dx

—I
2

=4
= [ =4¢*
2n x> 2 "
q 7 (7
Iﬂz—/ (——m) cos zdx
n! -z 4
2n 2 n 5 3 2 n—1
= [(Z—azg) (sina:)} —/ n (Z—:cz) (—2z)(sinz)dx
n! - _=
—z z
2n s 2 n—1
= {2?1/ x (% —932) sinxda:}
n! _x
2q2n /% (ﬂz 2)ﬂl .
= — z| ——=x sin xdx
(n—1)! —z 4
g2 2 T z 2 n—1
(G WA S R
I H T _=
-3 z
242" 5 /2 § n—1 242" 3 o (T
m-/_% (Z—m coswd&c—m/_%(n—l)(?m) 4 F
2¢2" 5 2 . n—1 4q2n T, [ 5 n—2
= (n—l)![% ( 1 - cos zdr — (n_g)!/;%ﬂ: 1 —x cosxzdr
3. Observe:
2g2" 3 /a2 5 n—1 qQ(n—l) 3 /2
-  _ szdr =922 . 2 Z
(?1_1)1/_% (4 "3) coswar == (n—1)!/_1(4

= ‘)qzjn—l

¥

-2
z

2

(Integrating by parts)

(Integrating by parts)
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Also,
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I, = 2quﬂ—l - ['pzqgjn—Q - 4(]2('?'1 - 1)171—1}
= (2(}2 + 4(]2?1 - 4q2)1'n.—1 - pzqun—z
= (4n —2)¢°In—1 — p°¢* L2 |

It is clear that Iy and I are integers. Assume that I, is an integer for n < k where k > 2.
By 3., we have that I+, = (4k + 2)g21k — p?¢*I 4

By induction hypothesis, I}, and Ij._; are integers. As (4k 4 2)q? and p’q? are integers as well, we have
it that 4 1s an integer.

Thus, I, 1s an integer for n =0,1,2,--- |

For z € [ u } we have that cosz > 0. Also, ™ >
S 279 . 4
Thus, (z—:{:z) cosx >0forn=0,1,---
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It is clear that the integrand is not identically zero. As it’s strictly positive in (——= §) , giving us that
I, #£0.

oIy, > 0.
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Substitute r = wt
1

2 2n 5
= / T2 (1 — 1) dt
na D
2 2n-2n 1
=T - i/z(t_t?)?ldt
n! 0
92N 5 1 n
o (s
n! J, \4
_r o 1 1 1
q 2P n! 22n 2
E(E)”‘i
g \2 n!
2n 1
— <2yt
q \2 7!
P2
6. Let x denote T
2n =1
Syl
q \2 n! n!

Let ng := |k] +1

For n > ng :
A K K K
n!' T ng! no+1 mg+2 n
KMo K
<T—r1-1---= (k < np)
ng! i
krotl
= T —
ol n
ng+1
Note that 7 is a fixed constant. Call it y.
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The right hand side tends to 0 as n — oc.
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As we had proven in 5., 0 < [,, < g (E)
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By above, we have that there exists a natural number N such that 7 ( ) %

2

<1

Thus, we have it that 0 < In < 1.

This is a contradiction as we had proven that I,, was an integer for all natural n.

The only assumption we had made was that m can be written as a ratio of positive integers. As 7 is
positive, if m were rational, it could have been written as a ratio of positive integers.

Thus, we have it that m must be irrational. ]



2.

Let xy, 22, , 2, be the solutions of the above system of equations. Then, by hypothesis we have that:
I Ia Iy
B LER—
t—12  t— 32 t—(2n—1)2
is an equation in t which has solutions ¢t = 22,42, --- ,4n?. (Not claiming that these are the only solutions.)

Multiplying with the denominators:
(Note that this does not change the set of solutions as all non-zero.)

ry(t =3t =5%) - (t— (2n—1)2) + 2t —12)(t = 5%) - (t—=(2n = 1))+ -+ 2, (t = 12)(t = 3%) .- (t — (2n - 3)?) =
(t—1%)(t—3%)---(t—(2n —1)?)

— "N 44 2) O =" " (1243 -+ (2 —1)2) + O(t" )
="t (P43 (20— 1)+ S) + Ot %) =0
Where O(t"~2) denotes that the expression is a polynomial in t with degree at most n — 2.

As the set of solutions has not been changed, we still have that t = 22,42, --- ,4n? are solutions. Now, note that
the above is a polynomial of degree n. As we already have n distinct solutions, they must be the only solutions.
n

Using Vieta’s formula, we have that the sum of roots is given by: 12432+ -+ (2n—1)2+5,, = Z (2k—1)*+S,

k=1
Zﬁ:(zk —1)* 48, = Zn:(zﬁz)ﬁ
k=1 k=1
= S,=> [2k)*-(2k-1)°]=) Hk-1]
k=1 k=1

= S,=2nn+1)—n
= S, =n(2n+1)

Now, we want Sy, that is, n(2n + 1) to be a perfect square.

Note that one of the ways that is possible is if n and 2n 4+ 1 are both perfect squares. (Not claiming that this
is the only way.)

Thus, we would have n = p? and 2n + 1 = ¢? for some p,q € Z.

Thus, giving us: ¢° — 2p* = 1.

As the above equation has infinitely many solutions, we will have infinitely many distinet values of n such that
S, is a perfect square. |

3.

Answer: |49. | Break all possible values of n into the four cases: n =2, n =4, n > 4 and n odd. By
. . . . ) =4
Fermat’s theorem, no solutions exist for the n = 4 case because we may write y? + (22°) =z

We show that for n odd, no solutions exist to the more general equation z™ — 3" = 2F where k is a
positive integer. Assume otherwise for contradiction’s sake, and suppose on the grounds of well ordering
that k is the least exponent for which a solution exists. Clearly x and y must both be even or both
odd. If both are odd, we have (z — y)(z" ! 4 .... + y*~1). The right factor of this expression contains
an odd number of odd terms whose sum is an odd number greater than 1, impossible. Similarly if =
and y are even, write z = 2u and y = 2v. The equation becomes u™ — v™ = 28— If k — n is greater
than 0, then our choice k could not have been minimal. Otherwise, k —n = 0, so that two consecutive
positive integers are perfect nth powers, which is also absurd.

For the case that n is even and greater than 4, consider the same generalization and hypotheses.
Writing n = 2m, we find (2™ — y™)(z™ + y™) = 2F. Then 2™ — y™ = 2 < 2F. By our previous work,
we see that m cannot be an odd integer greater than 1. But then mn must also be even, contrary to
the minimality of k.

Finally, for n = 2 we get 22 — y? = 2199 Factoring the left hand side gives  — y = 2% and = + y = 2°,
where implicit is @ < b. Solving, we get x = 20=1 4+ 291 and y = 2°=1 — 291 for a total of 49 solutions.
Namely, those corresponding to (a,b) = (1,99), (2,98),---,(49,51).



4.

Let z1,29,--- ,@2p+1 be 2k + 1 variables which are randomly chosen with uniform distribution in (0,1).(k €
Nu {0})
2k+1 1
N = —
> =]

Let P(k) denote the probability that N is odd. Hence, evaluate:

T 3 (2P 1)
k=0

First, let’s evaluate the probability that L%J is odd.

It is easy to observe that LI%J isodd iff z; € (£, 1) U(3. ) U(%.
Length of required interval:

=
e
(-

l——4-—"4+-——4---=In2

length of required interval
total length of interval

.. Required probability = lnTQ =In2

Required probability =

Now, evaluating P (k) is simplified as N is the sum of 2k+1 integers which would be odd iff an odd number of
those integers are odd and the rest are even, i.e., the following cases:

2k+1 odd, 0 even

2k-1 odd, 2 even

1 odd, 2k even
Treating this like a Bernoulli Trial, the required probability is given as:

ok + 1 %+ 1\ ., % + 1
P(k)Z( J)p”“*“r( ;)pgk‘l(l—p)"?---( 22 )p(l—p)”‘

ke

2% + 1 L .

=3 (M- (1
i=0

Where p = In2, the probability of one term being odd.
To simplify (1), the following can be observed:

. 2k+1 . 2k +1 ' 2k+1 . 2k+1 :
_ 2k+1 _ 2k+1 2k, 1 1, 2k 2k+1
(z+y) —( 0 )x +( ) )33 y+...( ok )xy +(2k+1)y

. 2k+1 . 2k +1 ' 2k+1 . 2k +1 :
2R 2k+1 _ 2k, 1 1,2k _ 2k+1
(x—1y) ( 0 )x ( | )33 Yy —I—( o )x Yy (QkJrl)y

Adding the two:

3 k
(z+ y)2k+1 +(z— y)2k+1 _ Z 2k+1 xszrl,zg.yzg
9 P 2i

Putting z = p and y = 1 — p and using (1):




Now, to evaluate the sum, it can be seen that is a geometric progression with first term (2p — 1) and common
ratio (2p — 1) with |2p — 1| < 1.

e o 2p—1
..JLI&;O(QP(k)—l)—m

_ 2p—1

~ 4p — 4p?
2In2 -1

4In2(1 —1n2)

First, if ¢ = 2 then we claim no such f and g exist. Indeed, one simply takes z =1 to
get f(1)/g(1) < 0, impossible.
For ¢ < 4, let ¢ = Zcost/, where U < ¢ < m. Vve clain that j exists and has minimuin

legree equal to n, where n is defined as the smallest integer satisfying sinnfl < 0. In
ther words

vy
n=|———|.
arccos(c/2)
First we show that this is necessary. To see it, write explicitly
n—2

g(z) =ap+ a1z + arx® + -+ ap_ox

vith each a; > 0, and a,,_2 # 0. Assume that n is such that sin(kf) > Ofork =1,...,n—1.
[hen, we have the following system of inequalities:

ay > 2cosf - ag
ag + as > 2cosf - ay
ay +az > 2cosf - as

Ap_5+ Qp_3 > 2cosl - a,_4
An—g + Qp_o > 2cosf - an_3

Ap_3 > 2cost - ap_»s.

Now, multiply the first equation by sinf, the second equation by sin 26, et cetera, up to
sin ((n — 1)#). This choice of weights is selected since we have

sin (kf) + sin ((k + 2)0) = 2sin ((k + 1)0) cos 6
;0 that summing the entire expression cancels nearly all terms and leaves only
sin ((n —2)f)ap—2 > sin((n—1)0) -2cosf - ap_»

mnd so by dividing by a,_2 and using the same identity gives us sin(nf) < 0, as claimed.
This bound is best possible, because the example

ap =sin((k+1)8) >0

nakes all inequalities above sharp. hence givine a workine pair ( f. q).



We prove that the condition z* + y* + z* + ryz = 4 implies
y+z
2—x > i
- 2

We first establish that 2 — = = 0. Indeed, AM-GM gives that

4 4 4 3t ! 4 4
S5=r"4+y" +(z +l}+ryz:T+ T—Fy + (2% 4+ 1)+ zy=

3rt
> % + z2y? + 222 + xyz.

We evidently have that z2y? 4+ 222 4+ zyz > 0 because the quadratic form a? + ab + 2b? is
positive definite, so z? < % — = < 2. Now, the desired statement is implied by its
square, so it suffices to show that

2
y+z
2 —x >
- ()

Assume for contradiction the reverse inequality holds. This rearranges to

dr + 9y + 29z + 2% > 8.
By AM-GM, we have z* + 3 > 4x and F% > y? which yields that
yt 4+ 24 yt + 24

5 +2z+4>8 = ' 4

r+

+ 2yz > 4.

Subtracting the given condition x* + y* + z* + zyz = 4 now gives

4, 4 4, .4
y'+ y'+
- 22 +(2—x)yz >0 — (Q—I}yz:}y QZ.

Since 2 — x and the right-hand side are positive, we have yz > 0. So, we have

yil + zd
2yz

2
<2-z< (—z) = 2t + 221 <yz(y +2)? = Pz + 2222 4yt

This is clearly false by AM-GM. so we have a contradiction.



7.

Solution 1. Let ¢ be a real number with 0 < t < /2. Taking z = t/+/2 and = = /(2 — t2)/2
in the given yields:

P(t) = P (t/VE+/1=872) = P (V2 - &)

We now decompose P into its odd and even parts. Let P(z) = Q(2?) + - R{z?). If R is not
the zero polynomial, plugging in @ = /2 — 2 into the above and rearranging yields:

P(Vi=#) - Q-
V2-o - R(2— 12)

_ P -QE-1)
R(2 — £7)

But this implies that we can express v/2 — £2 as a rational function in ¢ for all ¢ € (0,1) with
R(t) # 0, a contradiction. So R{z) = 0 for all z and P(z) = Q(2?).

We now note that, for all + with 0 < r < 1, we have Q(r) = @Q(2 — r}. Since this holds for
infinitely many r, it must be a polynomial identity. So Q{1 + ) is an even polynomial, and
so we can let Q(z) = A((z — 1)?) for some polynomial A.

Retruning to the origional functional equation, we note that:

P(V2z) = Q{2z%) = Aldx? — 42 + 1)

And:

Plz+ /1 —22) = Q14 2z/1 — x?) = A(4z® — 4z)

So for all € (0,1), A(4x? — 45") = A(1 — (42® - 4z*)). Since there are infinitely many
possible values of 4z* — 4z?, we must have that A(z) = A(1 — ) is a polynomial identity. So
A(} + 2) is an even polynomial, and so A(z) = B((z — 5)*) for some polynomial B.

Thus, we have that P{z) must satisfy P(x) = B(FPy(z)) for some polynomial B, where
Py(z) = [(22 —1)2 — %]2 It is easy to verify that Fp is indeed a solation, so all polynomials
in Py must be solutions as well. The proof is complete.



