1. Substituting n = 0 gives us:

$$I_0 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx = [\sin x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2$$

Substituing n = 1 gives:

$$\begin{split} \frac{I_1}{q^2} &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right) \cos x dx \\ &= \left[\left(\frac{\pi^2}{4} - x^2\right) \sin x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-2x)(\sin x) dx \qquad \text{(Integrating by parts)} \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2x \sin x dx \\ &= \left[2x(-\cos x) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-\cos x) dx \qquad \text{(Integrating by parts)} \\ &= 4 \\ &\Rightarrow I_1 = 4q^2 \\ I_n &= \frac{q^{2n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^n \cos x dx \\ &= \frac{q^{2n}}{n!} \left\{ \left[\left(\frac{\pi^2}{4} - x^2\right)^n (\sin x) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} n \left(\frac{\pi^2}{4} - x^2\right)^{n-1} (-2x)(\sin x) dx \right\} \\ &= \frac{q^{2n}}{n!} \left\{ 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \sin x dx \right\} \\ &= \frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \sin x dx \\ &= \frac{2q^{2n}}{(n-1)!} \left\{ \left[x \left(\frac{\pi^2}{4} - x^2\right) (-\cos x) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\left(\frac{\pi^2}{4} - x^2\right)^{n-1} + (n-1)x \left(\frac{\pi^2}{4} - x^2\right)^{n-2} (-2x) \right] (-\cos x) dx \right\} \\ &= \frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx - \frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (n-1)(2x^2) \left(\frac{\pi^2}{4} - x^2\right)^{n-2} dx \\ &= \frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx - \frac{4q^{2n}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x dx \quad \blacksquare \end{split}$$

3. Observe:

$$\frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx = 2q^2 \cdot \frac{q^{2(n-1)}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx$$
$$= 2q^2 I_{n-1}$$

Also,

$$\begin{split} &\frac{4q^{2n}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x dx \\ &= \frac{4q^{2n}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{\pi^2}{4} - \left(\frac{\pi^2}{4} - x^2\right)\right] \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x dx \\ &= \frac{4q^{2n}}{(n-2)!} \cdot \frac{\pi^2}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x dx - \frac{4q^{2n}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx \\ &= q^4 \pi^2 \cdot \frac{q^{2(n-2)}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x dx - 4q^2 (n-1) \frac{q^{2(n-1)}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x dx \\ &= q^4 \pi^2 I_{n-2} - 4q^2 (n-1) I_{n-1} \\ &= p^2 q^2 I_{n-2} - 4q^2 (n-1) I_{n-1} \end{split}$$

Thus,

$$I_n = 2q^2 I_{n-1} - \left[p^2 q^2 I_{n-2} - 4q^2 (n-1) I_{n-1} \right]$$

= $(2q^2 + 4q^2 n - 4q^2) I_{n-1} - p^2 q^2 I_{n-2}$
= $(4n-2)q^2 I_{n-1} - p^2 q^2 I_{n-2}$

It is clear that I_0 and I_1 are integers. Assume that I_n is an integer for $n \leq k$ where $k \geq 2$. By 3., we have that $I_{k+1} = (4k+2)q^2I_k - p^2q^2I_{k-1}$

By induction hypothesis, I_k and I_{k-1} are integers. As $(4k+2)q^2$ and p^2q^2 are integers as well, we have it that I_{k+1} is an integer.

Thus,
$$I_n$$
 is an integer for $n = 0, 1, 2, \cdots$

For
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
, we have that $\cos x \ge 0$. Also, $\frac{\pi^2}{4} \ge x^2$. Thus, $\left(\frac{\pi^2}{4} - x^2\right)^n \cos x \ge 0$ for $n = 0, 1, \cdots$

It is clear that the integrand is not identically zero. As it's strictly positive in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, giving us that $I_n \neq 0$. $\therefore I_n > 0$.

Now,

$$I_{n} = \frac{q^{2n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - x^{2}\right)^{n} \cos x dx$$

$$< \frac{q^{2n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - x^{2}\right)^{n} dx$$

$$= \frac{2q^{2n}}{n!} \int_{0}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - x^{2}\right)^{n} dx \qquad \left(f(x) = f(-x) \implies \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx\right)$$

$$= \frac{2q^{2n}}{n!} \int_{0}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - \left[\frac{\pi}{2} - x\right]^{2}\right)^{n} dx \qquad \left(\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx\right)$$

$$= \frac{2q^{2n}}{n!} \int_{0}^{\frac{\pi}{2}} (\pi x - x^{2})^{n} dx$$

$$= \frac{2q^{2n}}{n!} \int_{0}^{\frac{\pi}{2}} x^{n} (\pi - x)^{n} dx$$

Substitute $x = \pi t$

Substitute
$$x = \pi t$$

$$\begin{split} &= \frac{2q^{2n}}{n!} \int_0^{\frac{1}{2}} \pi^{2n+1} t^n (1-t)^n dt \\ &= \pi \cdot \frac{2q^{2n} \pi^{2n}}{n!} \int_0^{\frac{1}{2}} (t-t^2)^n dt \\ &\leq \pi \cdot \frac{2p^{2n}}{n!} \int_0^{\frac{1}{2}} \left(\frac{1}{4}\right)^n dt \\ &= \frac{p}{q} \cdot 2 \cdot p^{2n} \cdot \frac{1}{n!} \cdot \frac{1}{2^{2n}} \cdot \frac{1}{2} \\ &= \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!} \end{split}$$

$$\implies I_n < \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!}$$

6. Let κ denote $\frac{p^2}{4}$.

$$\therefore \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!} = \pi \frac{\kappa^n}{n!}$$
Let $n_0 := \lfloor \kappa \rfloor + 1$
For $n \ge n_0$:
$$\pi \frac{\kappa^n}{n!} = \pi \frac{\kappa^{n_0}}{n_0!} \cdot \frac{\kappa}{n_0 + 1} \cdot \frac{\kappa}{n_0 + 2} \cdots \frac{\kappa}{n}$$

$$\le \pi \frac{\kappa^{n_0}}{n_0!} \cdot 1 \cdot 1 \cdots \frac{\kappa}{n}$$

$$= \pi \frac{\kappa^{n_0+1}}{n_0!} \cdot \frac{1}{n}$$
($k < n_0$)

Note that $\pi \frac{\kappa^{n_0+1}}{n_0!}$ is a fixed constant. Call it χ .

$$\therefore \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!} \le \frac{\chi}{n}$$

The right hand side tends to 0 as $n \to \infty$.

 $\therefore \frac{\chi}{n} < 1$, for sufficiently large n.

$$\therefore \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!} < 1, \text{ for sufficiently large } n.$$

As we had proven in 5., $0 < I_n < \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!}$.

By above, we have that there exists a natural number N such that $\frac{p}{q} \left(\frac{p}{2}\right)^{2N} \frac{1}{N!} < 1$

Thus, we have it that $0 < I_N < 1$.

This is a contradiction as we had proven that I_n was an integer for all natural n.

The only assumption we had made was that π can be written as a ratio of positive integers. As π is positive, if π were rational, it could have been written as a ratio of positive integers.

Thus, we have it that π must be irrational.

Let x_1, x_2, \dots, x_n be the solutions of the above system of equations. Then, by hypothesis we have that:

$$\frac{x_1}{t-1^2} + \frac{x_2}{t-3^2} + \dots + \frac{x_n}{t-(2n-1)^2} = 1$$

is an equation in t which has solutions $t=2^2,4^2,\cdots,4n^2$. (Not claiming that these are the only solutions.) Multiplying with the denominators:

(Note that this does not change the set of solutions as all non-zero.)

$$x_1(t-3^2)(t-5^2)\cdots(t-(2n-1)^2) + x_2(t-1^2)(t-5^2)\cdots(t-(2n-1)^2) + \cdots + x_n(t-1^2)(t-3^2)\cdots(t-(2n-3)^2) = (t-1^2)(t-3^2)\cdots(t-(2n-1)^2)$$

$$\implies t^{n-1}(x_1 + x_2 + \dots + x_n) + O(t^{n-2}) = t^n - t^{n-1}(1^2 + 3^2 + \dots + (2n-1)^2) + O(t^{n-2})$$

$$\implies t^n - t^{n-1}(1^2 + 3^2 + \dots + (2n-1)^2 + S_n) + O(t^{n-2}) = 0$$

Where $O(t^{n-2})$ denotes that the expression is a polynomial in t with degree at most n-2.

As the set of solutions has not been changed, we still have that $t = 2^2, 4^2, \dots, 4n^2$ are solutions. Now, note that the above is a polynomial of degree n. As we already have n distinct solutions, they must be the only solutions.

Using Vieta's formula, we have that the sum of roots is given by: $1^2 + 3^2 + \dots + (2n-1)^2 + S_n = \sum_{k=1}^{n} (2k-1)^2 + S_n$

$$\therefore \sum_{k=1}^{n} (2k-1)^2 + S_n = \sum_{k=1}^{n} (2k)^2$$

$$\implies S_n = \sum_{k=1}^{n} \left[(2k)^2 - (2k-1)^2 \right] = \sum_{k=1}^{n} \left[4k - 1 \right]$$

$$\implies S_n = 2n(n+1) - n$$

$$\implies S_n = n(2n+1)$$

Now, we want S_n , that is, n(2n + 1) to be a perfect square.

Note that one of the ways that is possible is if n and 2n + 1 are both perfect squares. (Not claiming that this is the only way.)

Thus, we would have $n = p^2$ and $2n + 1 = q^2$ for some $p, q \in \mathbb{Z}$.

Thus, giving us: $q^2 - 2p^2 = 1$.

As the above equation has infinitely many solutions, we will have infinitely many distinct values of n such that S_n is a perfect square.

3.

Answer: $\lfloor 49. \rfloor$ Break all possible values of n into the four cases: n=2, n=4, n>4 and n odd. By Fermat's theorem, no solutions exist for the n=4 case because we may write $y^4 + (2^{25})^4 = x^4$.

We show that for n odd, no solutions exist to the more general equation $x^n - y^n = 2^k$ where k is a positive integer. Assume otherwise for contradiction's sake, and suppose on the grounds of well ordering that k is the least exponent for which a solution exists. Clearly x and y must both be even or both odd. If both are odd, we have $(x - y)(x^{n-1} + \dots + y^{n-1})$. The right factor of this expression contains an odd number of odd terms whose sum is an odd number greater than 1, impossible. Similarly if x and y are even, write x = 2u and y = 2v. The equation becomes $u^n - v^n = 2^{k-n}$. If k - n is greater than 0, then our choice k could not have been minimal. Otherwise, k - n = 0, so that two consecutive positive integers are perfect nth powers, which is also absurd.

For the case that n is even and greater than 4, consider the same generalization and hypotheses. Writing n=2m, we find $(x^m-y^m)(x^m+y^m)=2^k$. Then $x^m-y^m=2^a<2^k$. By our previous work, we see that m cannot be an odd integer greater than 1. But then m must also be even, contrary to the minimality of k.

Finally, for n=2 we get $x^2-y^2=2^{100}$. Factoring the left hand side gives $x-y=2^a$ and $x+y=2^b$, where implicit is a < b. Solving, we get $x=2^{b-1}+2^{a-1}$ and $y=2^{b-1}-2^{a-1}$, for a total of 49 solutions. Namely, those corresponding to $(a,b)=(1,99),(2,98),\cdots,(49,51)$.

Let $x_1, x_2, \dots, x_{2k+1}$ be 2k+1 variables which are randomly chosen with uniform distribution in $(0,1).(k \in$ $\mathbb{N} \cup \{0\}$

$$N := \sum_{i=1}^{2k+1} \left\lfloor \frac{1}{x_i} \right\rfloor$$

Let P(k) denote the probability that N is odd. Hence, evaluate:

$$\lim_{n \to \infty} \sum_{k=0}^{n} (2P(k) - 1)$$

First, let's evaluate the probability that $\left|\frac{1}{x_i}\right|$ is odd.

It is easy to observe that $\left\lfloor \frac{1}{x_i} \right\rfloor$ is odd iff $x_i \in \left(\frac{1}{2}, 1\right) \bigcup \left(\frac{1}{4}, \frac{1}{3}\right) \bigcup \left(\frac{1}{6}, \frac{1}{5}\right) \bigcup \dots$ Length of required interval

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2$$

Required probability = $\frac{\text{length of required interval}}{\text{total length of interval}}$ \therefore Required probability = $\frac{\ln 2}{1} = \ln 2$

Now, evaluating P(k) is simplified as N is the sum of 2k+1 integers which would be odd iff an odd number of those integers are odd and the rest are even, i.e., the following cases:

2k+1 odd, 0 even

2k-1 odd, 2 even

1 odd, 2k even

Treating this like a Bernoulli Trial, the required probability is given as:

$$P(k) = {2k+1 \choose 0} p^{2k+1} + {2k+1 \choose 2} p^{2k-1} (1-p)^2 + \dots {2k+1 \choose 2k} p (1-p)^{2k}$$

$$= \sum_{l=0}^{k} {2k+1 \choose 2i} p^{2k+1-2i} (1-p)^{2i}$$
(1)

Where $p = \ln 2$, the probability of one term being odd.

To simplify (1), the following can be observed:

$$(x+y)^{2k+1} = \binom{2k+1}{0}x^{2k+1} + \binom{2k+1}{1}x^{2k}y^1 + \dots \binom{2k+1}{2k}x^1y^{2k} + \binom{2k+1}{2k+1}y^{2k+1}$$
$$(x-y)^{2k+1} = \binom{2k+1}{0}x^{2k+1} - \binom{2k+1}{1}x^{2k}y^1 + \dots \binom{2k+1}{2k}x^1y^{2k} - \binom{2k+1}{2k+1}y^{2k+1}$$

Adding the two:

$$\frac{(x+y)^{2k+1} + (x-y)^{2k+1}}{2} = \sum_{i=0}^{k} {2k+1 \choose 2i} x^{2k+1-2i} y^{2i}$$

Putting x = p and y = 1 - p and using (1):

$$\frac{1 + (2p-1)^{2k+1}}{2} = P(k)$$

$$\therefore 2P(k) - 1 = (2p-1)^{2k+1}$$
(2)

Now, to evaluate the sum, it can be seen that is a geometric progression with first term (2p-1) and common ratio $(2p-1)^2$ with |2p-1| < 1.

$$\therefore \lim_{n \to \infty} \sum_{k=0}^{n} (2P(k) - 1) = \frac{2p - 1}{1 - (2p - 1)^2}$$

$$= \frac{2p - 1}{4p - 4p^2}$$

$$= \boxed{\frac{2\ln 2 - 1}{4\ln 2(1 - \ln 2)}}$$

5.

First, if $c \ge 2$ then we claim no such f and g exist. Indeed, one simply takes x = 1 to get $f(1)/g(1) \le 0$, impossible.

For c < 2, let $c = 2\cos\theta$, where $0 < \theta < \pi$. We claim that f exists and has minimum degree equal to n, where n is defined as the smallest integer satisfying $\sin n\theta \le 0$. In other words

$$n = \left\lceil \frac{\pi}{\arccos(c/2)} \right\rceil.$$

First we show that this is necessary. To see it, write explicitly

$$g(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-2}x^{n-2}$$

with each $a_i \ge 0$, and $a_{n-2} \ne 0$. Assume that n is such that $\sin(k\theta) \ge 0$ for $k = 1, \ldots, n-1$. Then, we have the following system of inequalities:

$$a_{1} \geq 2\cos\theta \cdot a_{0}$$

$$a_{0} + a_{2} \geq 2\cos\theta \cdot a_{1}$$

$$a_{1} + a_{3} \geq 2\cos\theta \cdot a_{2}$$

$$\vdots$$

$$a_{n-5} + a_{n-3} \geq 2\cos\theta \cdot a_{n-4}$$

$$a_{n-4} + a_{n-2} \geq 2\cos\theta \cdot a_{n-3}$$

$$a_{n-3} \geq 2\cos\theta \cdot a_{n-2}.$$

Now, multiply the first equation by $\sin \theta$, the second equation by $\sin 2\theta$, et cetera, up to $\sin ((n-1)\theta)$. This choice of weights is selected since we have

$$\sin(k\theta) + \sin((k+2)\theta) = 2\sin((k+1)\theta)\cos\theta$$

so that summing the entire expression cancels nearly all terms and leaves only

$$\sin((n-2)\theta) a_{n-2} \ge \sin((n-1)\theta) \cdot 2\cos\theta \cdot a_{n-2}$$

and so by dividing by a_{n-2} and using the same identity gives us $\sin(n\theta) \leq 0$, as claimed. This bound is best possible, because the example

$$a_k = \sin\left((k+1)\theta\right) \ge 0$$

makes all inequalities above sharp, hence giving a working pair (f, g).

We prove that the condition $x^4 + y^4 + z^4 + xyz = 4$ implies

$$\sqrt{2-x} \ge \frac{y+z}{2}.$$

We first establish that $2-x \ge 0$. Indeed, AM-GM gives that

$$5 = x^4 + y^4 + (z^4 + 1) + xyz = \frac{3x^4}{4} + \left(\frac{x^4}{4} + y^4\right) + (z^4 + 1) + xyz$$
$$\ge \frac{3x^4}{4} + x^2y^2 + 2z^2 + xyz.$$

We evidently have that $x^2y^2 + 2z^2 + xyz \ge 0$ because the quadratic form $a^2 + ab + 2b^2$ is positive definite, so $x^4 \le \frac{20}{3} \implies x \le 2$. Now, the desired statement is implied by its square, so it suffices to show that

$$2 - x \ge \left(\frac{y + z}{2}\right)^2$$

Assume for contradiction the reverse inequality holds. This rearranges to

$$4x + y^2 + 2yz + z^2 > 8.$$

By AM-GM, we have $x^4 + 3 \ge 4x$ and $\frac{y^4+1}{2} \ge y^2$ which yields that

$$x^4 + \frac{y^4 + z^4}{2} + 2yz + 4 > 8 \implies x^4 + \frac{y^4 + z^4}{2} + 2yz > 4.$$

Subtracting the given condition $x^4 + y^4 + z^4 + xyz = 4$ now gives

$$-\frac{y^4 + z^4}{2} + (2 - x)yz > 0 \implies (2 - x)yz > \frac{y^4 + z^4}{2}.$$

Since 2-x and the right-hand side are positive, we have $yz \geq 0$. So, we have

$$\frac{y^4 + z^4}{2yz} < 2 - x < \left(\frac{y + z}{2}\right)^2 \implies 2y^4 + 2z^4 < yz(y + z)^2 = y^3z + 2y^2z^2 + yz^3.$$

This is clearly false by AM-GM, so we have a contradiction.

Solution 1. Let t be a real number with $0 < t < \sqrt{2}$. Taking $x = t/\sqrt{2}$ and $x = \sqrt{(2-t^2)/2}$ in the given yields:

$$P(t) = P\left(t/\sqrt{2} + \sqrt{1 - t^2/2}\right) = P\left(\sqrt{2 - t^2}\right)$$

We now decompose P into its odd and even parts. Let $P(x) = Q(x^2) + x \cdot R(x^2)$. If R is not the zero polynomial, plugging in $x = \sqrt{2 - t^2}$ into the above and rearranging yields:

$$\sqrt{2-t^2} = \frac{P\left(\sqrt{2-t^2}\right) - Q(2-t^2)}{R(2-t^2)}$$
$$= \frac{P(t) - Q(2-t^2)}{R(2-t^2)}$$

But this implies that we can express $\sqrt{2-t^2}$ as a rational function in t for all $t \in (0,1)$ with $R(t) \neq 0$, a contradiction. So R(x) = 0 for all x and $P(x) = Q(x^2)$.

We now note that, for all r with 0 < r < 1, we have Q(r) = Q(2 - r). Since this holds for infinitely many r, it must be a polynomial identity. So Q(1 + x) is an even polynomial, and so we can let $Q(x) = A((x - 1)^2)$ for some polynomial A.

Retruning to the original functional equation, we note that:

$$P(\sqrt{2}x) = Q(2x^2) = A(4x^4 - 4x^2 + 1)$$

And:

$$P(x + \sqrt{1 - x^2}) = Q(1 + 2x\sqrt{1 - x^2}) = A(4x^2 - 4x)$$

So for all $x \in (0,1)$, $A(4x^2 - 4x^4) = A(1 - (4x^2 - 4x^4))$. Since there are infinitely many possible values of $4x^2 - 4x^4$, we must have that A(x) = A(1-x) is a polynomial identity. So $A(\frac{1}{2} + x)$ is an even polynomial, and so $A(x) = B((x - \frac{1}{2})^2)$ for some polynomial B.

Thus, we have that P(x) must satisfy $P(x) = B(P_0(x))$ for some polynomial B, where $P_0(x) = [(x^2 - 1)^2 - \frac{1}{2}]^2$. It is easy to verify that P_0 is indeed a solution, so all polynomials in P_0 must be solutions as well. The proof is complete.